《数学的实践与认识》
文章摘要:为了解决地铁轨道杂散电流影响特征众多,常规特征选择方法影响模型预测精度及模型结果可解释性差的问题,提出基于最优特征改进极端梯度提升(XGBoost)的杂散电流预测模型。利用遗传算法的灵活性和较强的搜索能力,在包含原始K个特征的集合中逐代寻找使目标函数MSE最小的前M个特征,建立最优特征选取方法下的杂散电流预测模型OFS-XGBoost(Optimal Feature Selection-XGBoost)。同时为了解决OFS-XGBoost模型预测结果较好,但是算法黑箱模型对预测结果解释性不足的问题,提出基于SHAP理论的归因分析框架,根据杂散电流特征样本的边际贡献,以易于理解的的方式显示特征集合对模型预测结果的影响,提高模型可解释性。结果表明:所提模型预测误差仅为1.684%,低于相同优化策略下的随机森林,BP神经网络等预测模型,基于SHAP值的归因分析方法可以从全局与个体角度解释输入特征对杂散电流预测结果的影响,在提高模型可解释性的基础上辅助地铁智能化健康管理。
文章关键词:极端梯度提升,特征选择,遗传算法,杂散电流,SHAP分析,
项目基金:西安市科技计划项目(2020KJRC0029),
论文作者:张泽涛1 杨媛2 李国锋3 陶崇勃3 牛一疆3
作者单位:1. 西安工程大学电子信息学院 2. 西安理工大学国际工学院 3. 中车永济电机有限公司电力电子事业部
论文分类号: U231.8
相似文献:基于XGBoost的列控车载设备故障预测方法.....作者:刘江,许康智,蔡伯根,郭忠斌,王剑,刊载期刊:《北京交通大学学报》